Acta Crystallographica Section E

Structure Reports

Online
ISSN 1600-5368

2,6-Bis(3-ferrocenyl-5-methyl-1 H-pyrazol-1-ylcarbonyl)pyridine

Yao-Cheng Shi,* Bei-Bei Zhu and Chun-Xia Sui

School of Chemistry, Yangzhou University, 130 XiMenWai Street, Yangzhou 225002, People's Republic of China

Correspondence e-mail: yzssyc@yzcn.net

Key indicators

Single-crystal X-ray study
$T=295 \mathrm{~K}$
Mean $\sigma(\mathrm{C}-\mathrm{C})=0.007 \AA$
R factor $=0.057$
$w R$ factor $=0.156$
Data-to-parameter ratio $=14.5$

For details of how these key indicators were automatically derived from the article, see http://journals.iucr.org/e.
(C) 2006 International Union of Crystallography All rights reserved

Molecules of the title compound, $\left[\mathrm{Fe}_{2}\left(\mathrm{C}_{5} \mathrm{H}_{5}\right)_{2}\left(\mathrm{C}_{25} \mathrm{H}_{19} \mathrm{~N}_{5} \mathrm{O}_{2}\right)\right]$, crystallize as enantiomeric pairs, located about inversion centers, thus acting as centrosymmetric dimers.

Comment

Pyrazole and polypyrazole compounds are finding increasing applications as ligands in coordination chemistry (Chakrabarty et al., 2004; Davies et al., 2005; Hardie et al., 2004; Michaud et al., 2005; Röder et al., 2004), supramolecular chemistry (Miranda et al., 2005) and organometallic chemistry (Esquius et al., 2001; Reger et al., 1996). As part of an ongoing investigation of the chemistry of organometallic pyrazoles, the title compound, (I), was synthesized (Shi et al., 2005) and its crystal structure determined (Fig. 1).

(I)

Compound (I) crystallizes in the centrosymmetric space group $P \overline{1}$. Two chiral molecules are present as an enantiomeric pair in the unit cell. For each pyrazole ring in (I), the bond distances (Table 1) are very close to those in N, N^{\prime}-butane-dioylbis(5-ferrocenyl-3-methyl-1H-pyrazole), indicating elec-

Figure 1
The molecular structure of (I), showing the atom-labelling scheme. Displacement ellipsoids are drawn at the 30% probability level.

Received 16 May 2006 Accepted 12 June 2006
tron delocalization (Gilchrist, 1997; Shi et al., 2005). The dihedral angles between the pyridine ring and the two pyrazole rings (the N1/C13 ring and N4/C25 ring) are 81.7 (2) and $66.1(2)^{\circ}$, respectively. The dihedral angles between the pyridine ring and the two carbonyl planes (the O1/C15/N2 and O2/ C21/N4 planes) are 74.1 (5) and $42.9(5)^{\circ}$, respectively. Interestingly, consistent with the large dihedral angles, the C15C 16 and $\mathrm{C} 20-\mathrm{C} 21$ bonds $[1.508(6)$ and $1.486(6) \AA$] are typical of a single bond $\left(\mathrm{Csp}^{2}-\mathrm{Csp}{ }^{2}\right)$, suggesting that the carbonyl groups are not involved in conjugation with the pyridine ring. However, dihedral angles of 6.9 (2) and 1.3 (2) ${ }^{\circ}$ between the pyrazole ring and the adjacent substituted cyclopentadienyl ring indicate that they are conjugated with each other; this is in accord with the $\mathrm{C} 10-\mathrm{C} 11$ and $\mathrm{C} 25-\mathrm{C} 26$ bonds [1.452 (5) and 1.459 (5) Å], which have double-bond character.

Aromatic $\pi-\pi$ stacking interactions between the pyridine ring in the molecule at (x, y, z) and the corresponding ring in the molecule at $(1-x, 1-y, 1-z)$ is found in the crystalline state of the title compound. The ring-centroid and interplanar distances of 3.681 (3) and $3.343 \AA$, respectively, show that in the unit cell two chiral molecules form a centrosymmetric dimer at $\left(\frac{1}{2}, \frac{1}{2}, \frac{1}{2}\right)$ (Glidewell et al., 2005).

Experimental

A mixture of $\mathrm{SOCl}_{2}(4 \mathrm{ml}, 55 \mathrm{mmol})$ and pyridine-2,6-dicarboxylic acid (5 mmol) was refluxed under N_{2} until the solid disappeared. After removal of SOCl_{2}, the residue was dissolved in 10 ml of THF and cooled to 273 K . To this solution were added dropwise $\mathrm{Et}_{3} \mathrm{~N}$ ($2 \mathrm{ml}, 14.3 \mathrm{mmol}$) in 5 ml of THF and 3-ferrocenyl-5-methyl- 1 H pyrazole (10 mmol) in 15 ml of THF. The reaction mixture was allowed to reach ambient temperature and stirred for 20 h . The solvent was evaporated under reduced pressure and the resulting solid was purifed by chromatography on silica gel (eluant 5:1 v / v, dichloromethane-diethyl ether) to afford an orange-yellow solid (m.p. $513.6-514.4 \mathrm{~K}$, yield 38.4%). Orange-red crystals of the title compound suitable for single-crystal X-ray diffraction were obtained from a dichloromethane/acetone solution (2:3). IR (KBr): 3101 (m, $\mathrm{CH}), 1711(s, \mathrm{O}=\mathrm{C}), 1589(\mathrm{~m}, \mathrm{C}=\mathrm{N}), 1358(\mathrm{vs}, \mathrm{C}-\mathrm{N}) \mathrm{cm}^{-1}$.

Crystal data

$$
\begin{array}{ll}
{\left[\mathrm{Fe}_{2}\left(\mathrm{C}_{5} \mathrm{H}_{5}\right)_{2}\left(\mathrm{C}_{25} \mathrm{H}_{19} \mathrm{~N}_{5} \mathrm{O}_{2}\right)\right]} & V=1478.8(6) \AA^{3} \\
M_{r}=663.33 & Z=2 \\
\text { Triclinic, } P \overline{1} & D_{x}=1.490 \mathrm{Mg} \mathrm{~m}^{-3} \\
a=10.483(2) \AA & \text { Mo } K \alpha \text { radiation } \\
b=11.850(2) \AA & \mu=1.02 \mathrm{~mm}^{-1} \\
c=13.033(3) \AA & T=295 \mathrm{~K} \\
\alpha=88.76(3)^{\circ} & \text { Block, orange-red } \\
\beta=68.75(3)^{\circ} & 0.20 \times 0.15 \times 0.10 \mathrm{~mm} \\
\gamma=78.92(3)^{\circ} &
\end{array}
$$

Data collection

[^0]
Refinement

Refinement on F^{2}

$$
\begin{aligned}
& w=1 /\left[\sigma^{2}\left(F_{\mathrm{o}}{ }^{2}\right)+(0.0937 P)^{2}\right. \\
& \quad+0.1751 P] \\
& \text { where } P=\left(F_{\mathrm{o}}^{2}+2 F_{\mathrm{c}}^{2}\right) / 3 \\
& (\Delta / \sigma)_{\max }=0.001 \\
& \Delta \rho_{\max }=1.04 \mathrm{e}^{-3} \AA^{-3} \\
& \Delta \rho_{\min }=-0.97 \mathrm{e}^{-3}
\end{aligned}
$$

$R\left[F^{2}>2 \sigma\left(F^{2}\right)\right]=0.057$
$w R\left(F^{2}\right)=0.156$
$S=1.08$
5788 reflections
399 parameters
H -atom parameters constrained

Table 1

Selected bond lengths (\AA).

$\mathrm{Fe} 1-\mathrm{C} 1$	$2.031(5)$	$\mathrm{Fe} 2-\mathrm{C} 26$	$2.026(3)$
$\mathrm{Fe} 1-\mathrm{C} 2$	$2.034(4)$	$\mathrm{Fe} 2-\mathrm{C} 27$	$2.035(4)$
$\mathrm{Fe} 1-\mathrm{C} 3$	$2.036(4)$	$\mathrm{Fe} 2-\mathrm{C} 28$	$2.041(4)$
$\mathrm{Fe} 1-\mathrm{C} 4$	$2.038(4)$	$\mathrm{Fe} 2-\mathrm{C} 29$	$2.039(4)$
$\mathrm{Fe} 1-\mathrm{C} 5$	$2.022(4)$	$\mathrm{Fe} 2-\mathrm{C} 30$	$2.023(4)$
$\mathrm{Fe} 1-\mathrm{C} 6$	$2.034(4)$	$\mathrm{Fe} 2-\mathrm{C} 31$	$2.017(5)$
$\mathrm{Fe} 1-\mathrm{C} 7$	$2.037(4)$	$\mathrm{Fe} 2-\mathrm{C} 32$	$2.020(5)$
$\mathrm{Fe} 1-\mathrm{C} 8$	$2.037(4)$	$\mathrm{Fe} 2-\mathrm{C} 33$	$2.039(4)$
$\mathrm{Fe} 1-\mathrm{C} 9$	$2.031(4)$	$\mathrm{Fe} 2-\mathrm{C} 34$	$2.034(4)$
$\mathrm{Fe} 1-\mathrm{C} 10$	$2.028(4)$	$\mathrm{Fe} 2-\mathrm{C} 35$	$2.020(4)$

All H atoms in (I) were placed at geometrically idealized positions and subsequently treated as riding atoms, with $\mathrm{C}-\mathrm{H}$ distances of 0.93 (aromatic and olefinic) and $0.96 \AA\left(\mathrm{CH}_{3}\right)$, and with $U_{\text {iso }}(\mathrm{H})$ values of $1.2 U_{\text {eq }}(\mathrm{C})$ or $1.5 U_{\text {eq }}$ (methyl C). The highest residual density peak is located $1.01 \AA$ from atom Fe 2 .

Data collection: CAD-4 Software (Enraf-Nonius, 1989); cell refinement: CAD-4 Software; data reduction: XCAD4 (Harms \& Wocadlo,1995); program(s) used to solve structure: OSCAIL-X (McArdle, 2005) and SHELXS97 (Sheldrick, 1997); program(s) used to refine structure: OSCAIL-X and SHELXL97 (Sheldrick, 1997); molecular graphics: PLATON (Spek, 2003); software used to prepare material for publication: PLATON.

The authors thank the Natural Science Foundation of China (No. 20572091) and the Natural Science Foundation of Jiangsu Province (No. 05KJB150151) for financial support of this work.

References

Chakrabarty, S., Poddar, R. K., Poulsen, R. D., Thompson, A. L. \& Howard, J. A. K. (2004). Acta Cryst. C60, m628-m630.

Davies, G. M., Adams, H. \& Ward, M. D. (2005). Acta Cryst. C61, m221-m223.
Enraf-Nonius. (1989). CAD-4 Software. Enraf-Nonius, Delft, The Netherlands.
Esquius, G., Pons, J., Yáñez, R. \& Ros, J. (2001). J. Organomet. Chem. 619, $14-$ 23.

Gilchrist, T. L. (1997). Heterocyclic Chemistry, 3rd ed. London: Addison Wesley Longman Limited.
Glidewell, C., Low, J. N., Skakle, J. M. S. \& Wardell, J. L. (2005). Acta Cryst. C61, o209-o210.
Hardie, M. J., Kilner, C. A. \& Halcrow, M. A. (2004). Acta Cryst. C60, m177m179.
Harms, K. \& Wocadlo, S. (1995). XCAD4 University of Marburg, Germany.
McArdle, P. (2005). OSCAIL-X for Windows. Version 1.04. Crystallography Centre, Chemistry Department, NUI Galway, Ireland.
Michaud, A., Fontaine, F.-G. \& Zargarian, D. (2005). Acta Cryst. E61, m904m906.
Miranda, C., Escartí, F., Lamarque, L., García-España, E., Navarro, P., Latorre, J., Lloret, F., Jiménez, H. R. \& Yunta, M. J. R. (2005). Eur. J. Inorg. Chem., 189-208.
North, A. C. T., Phillips, D. C. \& Mathews, F. S. (1968). Acta Cryst. A24, 351359.

metal-organic papers

Reger, D. L., Collins, J. E., Rheingold, A. L. \& Liable-Sands, L. M. (1996). Organometallics, 15, 2029-2032.
Röder, J. C., Meyer, F., Kaifer, E. \& Pritzkow, H. (2004). Eur. J. Inorg. Chem. pp. 1646-1660.

Sheldrick, G. M. (1997). SHELXS97 and SHELXL97. University of Göttingen, Germany
Shi, Y.-C., Sui, C.-X. \& Cheng, H.-J. (2005). Acta Cryst. E61, m1563-m1565. Spek, A. L. (2003). J. Appl. Cryst. 36, 7-13.

[^0]: Enraf-Nonius CAD-4
 \quad diffractometer
 $\omega / 2 \theta$ scans
 Absorption correction: ψ scan
 \quad (North et al., 1968)
 $\quad T_{\min }=0.822, T_{\max }=0.905$
 6122 measured reflections

 Enraf-Nonius CAD-4
 diffractometer
 $\omega / 2 \theta$ scans
 (North et al., 1968)
 $T_{\min }=0.822, T_{\max }=0.905$
 6122 measured reflections

